智能驾驶涉及人机交互、视觉处理、智能决策等,核心是AI算法和芯片。伴随汽车电子化提速,汽车半导体加速成长,2017 年全球市场规模 288 亿美元(+26%),远高于整车销量增速(+3%),其中占比最高的为功能芯片MCU(66 亿美元,占比 23%),随后还包括功率半导体(21%)、传感器(13%)等。
汽车半导体按种类可分为功能芯片 MCU(Microcontroller Unit)、功率半导体(IGBT、MOSFET等)、传感器及其他。根据Strategy Analytics,在传统燃油汽车中,MCU 价值量占比最高,为23%;在纯电动车中,MCU 占比仅次于功率半导体,为11%。DIGITIMES预测,功能芯片MCU市场规模有望从2017年66亿美元稳步提升至2020年72亿美元。
传统汽车的功能芯片仅适用于发动机控制、电池管理等局部功能不足以满足高数据量的智能驾驶相关运算。
近年来,伴随智能驾驶渗透率提升,全球芯片巨头纷纷进军汽车产业,推出具备AI计算能力的主控芯片。主控芯片市场规模有望快速成长,IHS预测2020年可达40亿美元。
主控芯片巨头具有较强的AI计算优势,功能芯片厂商有着非常丰富的汽车产业链经验,两大阵营之间兼并收购及联盟合作频发。
截至目前,英伟达已与全球370+整车厂、一级供应商达成合作;英特尔收购Mobileye切入汽车产业;高通曾意图收购恩智浦等。
智能驾驶涉及人机交互、视觉处理、智能决策等,AI算法和芯片是核心。据恩智浦统计,目前一辆高端汽车已经搭载超过1亿行代码,远超飞机、手机、互联网软件等,未来伴随无人驾驶的渗透率及级别提升,汽车搭载的代码行数将呈现指数级增长。
自动驾驶软件计算量已达到10个TOPS(Tera Operations Per Second,万亿次操作每秒)量级。传统汽车MCU的算力难以满足无人驾驶汽车的计算要求,GPU、FPGA、ASIC等AI芯片进入汽车市场。
全球无人驾驶领导者包括谷歌、百度、特斯拉、奥迪等,从这些厂商的无人驾驶主控模块的SoC芯片架构或可一窥汽车芯片发展方向。
百度 Apollo:恩智浦/英飞凌/瑞萨MCU+赛灵思FPGA/英伟达GPU。百度无人驾驶样车采用 IPC(工控机)方案,但工控机的体积和功耗难以满足量产化要求,因而百度也推出了适合于量产的域控制器嵌入式方案。将各个传感器的原始数据接入到Sensor Box中,在Sensor Box中完成数据的融合,再将融合后的数据传输到计算平台上进行无人驾驶算法处理。
百度无人驾驶专用计算平台ACU(Apollo Computing Unit)定义了三个系列新产品:MLOC(高精定位,MCU)、MLOP(高精定位+环境感知,MCU+FPGA)、MLOP2(高精定位+环境感知+决策规划,MCU+GPU)。
特斯拉:从Mobileye ASIC到英伟达GPU。2014 年特斯拉发布Autopilot 1.0,搭载1个前置摄像头、1个后置倒车摄像头(不参与辅助驾驶)、1个前置雷达、12个超声波传感器,视觉芯片采用MobileyeEyeQ3,主控芯片采用NVIDIA Tegra 3。
2016年底特斯拉发布Autopilot 2.0,搭载3个前置摄像头(不同视角广角、长焦、中等)、4个侧边摄像头(左前、右前、左后、右后)、1个后置摄像头、1个前置雷达(增强版)、12个超声波传感器(传感距离增加一倍),主控芯片采用NVIDIADrive PX 2,处理速度为Autopilot 1.0的40倍。
奥迪:Mobileye ASIC英伟达GPU+Altera FPGA+英飞凌MCU的多芯片集成方案。全新奥迪A8公开了自己的zFAS控制器方案。zFAS共有四块高性能的处理器:1)Mobileye的EyeQ3负责视觉信息处理,包括交通标志识别、行人识别、碰撞提醒、车道线)英伟达的Tegra K1 SoC负责360°环视影像;3)Altera的Cyclone5 FPGA负责传感器融合、地图融合、辅助泊车等;4)英飞凌的Aurix系列MCU用于交通拥堵控制、辅助驾驶等。
在汽车主控芯片领域,GPU仍将保持通用汽车主控芯片的主流地位,FPGA作为有效补充,ASIC将成终极方向。
当前人工智能及智能驾驶算法尚未定型,GPU作为通用加速器,预计仍将在相当长一段时间内保持其汽车主控芯片的主流地位;FPGA作为硬件加速器,料将成为GPU的有效补充;将来如果全部或部分智能驾驶算法得以固化,ASIC将成为最优性价比的终极选择。
英伟达收入净利润迅速增加,汽车为长期动力。英伟达是GPU领域龙头,常年保持超70%市占率。英伟达2018财年(对应2017自然年)收入97.1亿美元,同比+40.6%;净利润30.5亿美元,同比+82.9%。
英伟达数字座舱计算机Drive CX:利用先进3D导航、高分辨率数字仪表组、自然语音处理及图像处理实现驾驶辅助功能。Drive CX的内核是基于Maxwell架构的Tegra X1 SoC,除此以外还有选配置为Tegra K1 SoC。
DRIVE CX的基本功能包括:1)自然语言处理,通过语音识别完成地址查询、呼叫联系人等功能;2)3D导航和信息娱乐,为众多应用程序提供高分辨率、高帧率的图形显示;3)全数字仪表组,通过仪表组或抬头显示HUD提供丰富的图形显示;4)环绕视觉,利用复杂的运动恢复结构技术和先进的拼接技术,改善鱼眼镜头的图像渲染、减少重影现象,并可在高精细模型中渲染出一辆虚拟汽车,实现逼线)对接AndroidAuto,拥有Android智能手机或iPhone的驾驶员能轻松访问自己的移动电子设备,与地图、搜索和音乐等应用进行互动。
英伟达无人驾驶汽车平台Drive PX:将深度学习、传感器融合和环绕视觉相结合,力求改变驾驶体验。Drive PX的基本功能包括:1)传感器融合,可以融合来自12个摄像头、激光雷达、毫米波雷达和超声波传感器的数据;2)计算机视觉和深度神经网络,适用于运行DNN(Deep Neural Network,深度神经网络)模型,可实现智能检测和跟踪;3)端到端高清制图,可快速创建并一直更新高清地图;4)软件开发工具包DriveWorks,包含了可供参考的应用程序、工具和库模块。
英特尔传统业务增长乏力,进军汽车领域创造业绩新增长点。英特尔曾经是世界上最大的半导体芯片制造商。
据PassMark统计,2017Q1英特尔占据全球CPU行业的市场占有率为80%。近年随只能手机的兴起与个人电脑市场的景气降低,芯片主业收入增速显而易见地下降,公司营业收入被三星电子超越。公司曾尝试生产了手机处理器但最后表现失利,并不得不解散了负责该业务的部门。
近年来,英特尔通过大量收购积极布局无人驾驶、物联网、人工智能、VR等新兴领域,创造业绩的新增长点,力图实现从传统芯片制造商向多元解决方案提供商转型。
英特尔收购Mobileye:全球视觉ADAS领导者。Mobileye是全球视觉ADAS市场领导者之一,掌握ADAS市场80%份额,拥有丰富的视觉ADAS产品。Mobileye的专有软件算法和EyeQ芯片能对视觉信息进行详细分析并预测与其他车辆、行人、自行车或其他障碍物的可能碰撞,还能够检测道路标记、交通标志和交通信号灯。
截至2017年底,Mobileye的产品已经被用于27个整车厂的313款车型,当年出货量870万颗。2017年3月英特尔以153亿美元收购Mobileye,打造英特尔车队。车队将包括各种汽车品牌和车型,以展示其多功能性和适应性。L4级车辆将被部署在美国、以色列和欧洲进行测试。
英特尔收购Altera:无人驾驶FPGA芯片已经量产。目前全球FPGA市场主要被Xilinx和Altera瓜分,合计占有近90%的市场占有率,合计专利达到6000多项。
Altera的FPGA产品共有四大系列,分别是顶配的Stratix系列(近万美元)、成本与性能平衡的Arria系列(2000~5000美元)、廉价的Cyclone系列(10~20美元)、以及MAX系列CPLD。英特尔2015年宣布完成对Altera的收购,帮助快速地增长的数据中心与IoT业务。
高通传统业务收入下滑,积极进行新兴起的产业布局。高通为全球智能手机SoC龙头。
在汽车领域,高通提供的解决方案包括:1)车载资讯系统,为汽车优化制定的蜂窝网解决方案;2)驾驶数据平台,智能收集和分析来自不一样的汽车传感器的数据,使汽车实现精准定位,监控和学习驾驶模式,感知周围环境,已经准确与外界共享此平台的信息;3)资讯娱乐,提供3D导航、在线媒体播放和驻车辅助支持,以及语音、人脸和终端识别等功能;4)电动汽车无线充电,推出Qualcomm Halo WEVC无线充电解决方案。
高通推出车载信息娱乐系统解决方案。骁龙汽车平台信息娱乐系统现分为极简(Select)、高端(High)和顶级(Premium)方案。
极简方案能支持3个显示屏,包括信息娱乐系统、仪表和抬头显示(HUD);高端层级能支持多达4个显示屏,副驾驶或后座娱乐能拥有单独的屏幕,同时还支持顶级音频、低时延无线传输高清视频、环视处理,深度学习与计算机视觉处理可分辨附近的障碍物和行人;顶级方案能支持多达6个显示屏,包括仪表、信息娱乐系统、HUD、副驾驶、后座(两个不同的屏幕)。
2017年CES展上,参展的玛莎拉蒂硬件上搭载定制的骁龙汽车解决方案,包括骁龙汽车级处理器、Gobi3G/4GLTE无线调制解调器、Wi-Fi和蓝牙模块等。另一辆参展车克莱斯勒Portal,安装了松下车载娱乐概念系统,此系统将以最新版本的安卓汽车以及高通公司骁龙芯片为工作基础。
骁龙X16 LTE调制解调器支持高达1Gbps的峰值,有助于满足下一代智能网联汽车的连接需求和使用案例,包括高清地图更新、实时交通和路况信息的连接导航、软件升级、Wi-Fi热点和多媒体流。
此外,高通于2017年9月推出了基于第三代合作伙伴计划(3GPP)版本14规范的全球首款蜂窝车到车(C-V2X)商用解决方案,高通9150 C-V2X 芯片组。该芯片组包括运行智能交通系统(ITS)V2X 堆栈的应用处理器以及硬件安全模块(HSM),预计在2018年下半年上市,最早于 2019 年实现量产并向车厂供货。C-V2X同时支持 DSRC和LTE通信,为车辆提供周围环境信息、非视距(NLOS)场景下的信息。
功能芯片市场较为成熟、格局较为稳定。据Strategy Analytics统计,2016年全球车载MCU安装量超25亿,平均每辆汽车安装25~30个 MCU。2016年全世界汽车MCU市场TOP5分别为恩智浦(14%)、英飞凌(11%)、瑞萨电子(10%)、意法半导体(8%)、德州仪器(7%)。
相比于消费芯片及普通工业芯片,汽车芯片的工作环境更为恶劣:温度范围可宽至-40~155℃、高振动、多粉尘、电磁干扰等。由于涉及人身安全问题,汽车芯片对于可靠性及安全性的要求也更高,一般设计寿命为15年或20万公里。“车规级”芯片需要经过严苛的认证流程,包括可靠性标准 AEC-Q100、质量管理标准ISO/TS 16949、功能安全标准ISO26262等。
一款芯片通常要2~3年时间完成车规认证并进入整车厂供应链;而一旦进入之后,一般也能拥有长达5-10年的供货周期。高安全与高可靠性标准、长供货周期、与中下游零部件厂商和整车厂长久的合作伙伴关系是目前汽车芯片格局稳定的主要原因。
功能芯片市场格局亦存变数:1)传统功能芯片厂商在保持原有份额的基础上,积极拓展主控芯片,如恩智浦Bluebox、英飞凌Aurix、瑞萨R-Car等;2)功能芯片厂商之间通过兼并收购整合优势,如恩智浦收购飞思卡尔、英飞凌意图收购意法半导体等;3)半导体巨头亦希望能够通过收购功能芯片厂商获取车载技术及渠道经验,如英特尔收购Mobileye,高通曾意图收购恩智浦等。
恩智浦:提供完整汽车半导体解决方案,Bluebox 平台支持L4级无人驾驶。
汽车电子布局:恩智浦汽车半导体产品覆盖MCU和MPU、车载网络、媒体和音频处理、智能电源驱动器、能源与电源管理、传感器、系统基础芯片、驾驶员辅助收发器、汽车安全等。
无人驾驶平台:恩智浦BlueBox是一款无人驾驶开发平台,集成了S32V234汽车视觉和传感器融合处理器、S2084A嵌入式计算处理器、S32R27雷达微控制器。BlueBox可完成多传感器融合(毫米波雷达、视觉、激光雷达、车联网),支撑 L4级自动驾驶,功耗小于40W,算力达90,000 DMIPS(Dhrystone Million Instructions executed Per Second,百万条指令每秒)。
视觉芯片:S32V234视觉处理器,拥有CPU(4颗ARMCortexA53和1颗M4)、3D GPU(Vivante GC3000)和视觉加速单元(2颗APEX-2vision accelerator),支持4路摄像头。可用于前视摄像头、后视摄像头、环视系统、传感器融合系统等,能实时3D建模,计算能力为50GFLOPs。同时,S32V234芯片预留了支持毫米波雷达、激光雷达、超声波的接口,可实现多传感器数据融合,最高可支持ISO26262ASIL-C标准。
雷达芯片:S32R27雷达处理器,采用两个e200z7 32位 CPU 和两个32位锁步模式e200z4,能够支持自适应巡航控制、智能大灯控制、车道偏离警告和盲点探测等功能。
汽车电子布局:英飞凌汽车半导体产品覆盖车身半导体、汽车安全、底盘总成、动力总成、混合动力汽车和电动车、有源天线等。
自动驾驶平台:英飞凌推出Aurix自动驾驶域控制器,可完成传感器信号融合(雷达、摄像头、超声波和激光雷达)、计算最佳驾驶策略,并触发汽车中的执行器,支持增强型ADAS功能,如交通辅助、自主避障等。
视觉芯片:可实现车道偏离预警、前向碰撞预警、交通标志识别、行人识别等ADAS功能。
雷达芯片:1)77GHz远程雷达系统,采用 SiGe(硅锗)技术保证高频功能和耐用性,可用于避撞系统;2)24GHz近/中程雷达系统,同样采用SiGe(硅锗)技术,可用于盲点监测系统。
车内3D摄像头芯片:英飞凌推出3D图像传感器芯片Real3系列产品,采用飞行时间(ToF)相机测量3D环境,可识别驾驶员行为并将此信息传递给ADAS,还能提高HMI体验如手势识别等。
汽车电子布局:瑞萨汽车半导体产品覆盖片上系统(SoC)、电源管理、电池管理、功率器件、通信器件、视频和显示等。
无人驾驶平台:瑞萨推出自动驾驶SoC R-Car,采用ARM CPU和PowerVR GPU,可扩展的硬件平台可覆盖入门级(R-Car E系列)、中级(R-Car M系列)及高级(R-Car H系列),支持多种开源软件(安卓、QNX、Linux、Windows、Genivi等)。此外,还有车外摄像头芯片(R-Car V系列)、车内摄像头芯片(R-Car T系列)、智能座舱芯片(R-Car D系列)、车联网芯片(R-Car W系列)等。
意法半导体:安全主导的半导体制造商,ADAS产品覆盖视觉、雷达、车联网。
汽车电子布局:意法半导体的汽车半导体产品覆盖高级辅助驾驶系统ADAS、车身舒适系统、底盘和安全系统、新能源汽车、娱乐系统、移动服务、动力系统、通信和网络等。
视觉芯片:可用于前视、后视、侧视、以及车内摄像头的信号处理。此外,意法半导体与Mobileye合作开发EyeQ系列芯片,负责芯片制造技术、专用存储器、高速接口电路和系统封装设计,以及总体安全架构设计。
雷达芯片:1)77GHz远程雷达系统,STRADA770单芯片收发器,可覆盖76-81GHz,可用于自适应巡航ACC、自动制动AEB、碰撞预警FCW、换道辅助LCA、行人检测PD等功能;2)24GHz短程雷达系统,STRADA431芯片,包含一个发射器和三个接收器,适用于盲区检测BSD、换道辅助LCA、泊车辅助PA、倒车侧方检测RCTA、碰撞缓解制动CMB等。详情请关注公众号【车端】
车联网芯片:基于DSRC的V2X解决方案,意法半导体和以色列V2X厂商Autotalks于2014年开始合作研发V2X芯片组。在2018CES上展出的V2X解决方案整合了意法半导体的Telemaco3车载信息服务平台和Autotalks的CRATON2芯片组。
汽车电子布局:德州仪器的汽车半导体产品覆盖高级辅助驾驶系统ADAS、信息娱乐系统与仪表组、车身电子装置与照明、HEV/EV和动力系统等。
自动驾驶平台:德州仪器ADAS基本的产品是TDAx系列,包括TDA2x、TDA3x、TDA2Eco三款SoC,基于异构硬件和通用软件架构,可提供可扩展的开放式ADA解决方案。TDA2x于2013年10月发布,主要面向中到中高级市场,配置了2颗ARM Cortex-A15内核与4颗Cortex-M4内核、2颗TI定浮点C66xDSP内核、4颗EVE视觉加速器核心,以及ImaginationSGX544GPU,主要使用在于前置摄像头信息处理,包括车道报警、防撞检测、自适应巡航以及自动泊车系统等。
TDA3x于2014年10月发布,主要面向中到中低级市场,其缩减了包括双核A15 及SGX544GPU,主要使用在在后置摄像头、2D或2.5D环视等,可支持车道线辅助、自适应巡航控制、交通标志识别、行人与物体检测、前方防碰撞预警和倒车防碰撞预警等多种ADAS算法。
传感器芯片:包括摄像头芯片(前视、后视、侧视、环视)、雷达芯片(远程、短程、多模式)、扫描激光雷达芯片、超声波芯片,以及传感器融合芯片等。
汽车从“功能机”进化为“智能机”,从“汽车电子”到“无人驾驶”。战略看好智能驾驶产业链中汽车芯片为其中的核心元器件。
从全球范围看,布局汽车芯片产业的巨头公司包括:英伟达、英特尔、高通等;潜在的兼并收购标的包括:英飞凌等。国内公司从车载娱乐系统等安全等级要求较低的产品入手,有望逐渐从后装渗透至前装、从国产整车厂渗透至合资车厂。
作为两年一届的汽车界盛事,北京车展正在如火如荼地举行,今年的主题是“定义汽车新生活”。先不说怎么样去定义关于汽车的新生活,但明显的一点是,这次车展出现了不少专注新能源汽车的厂商,似乎预示着新能源车的市场比例会有所增长。 在双积分政策的限制之下,传统车企也在不断突破。从传统汽车转为新能源、燃油车型双轨并行的产品线。除此以外,顺应花了钱的人移动网络的使用需求,推出的新车型都需要加强在这方面的投入。由此及此,长安汽车在日前举行以“创新 创业 创未来”为主题的战略发布会上,明确发展的方向,以“ 智能化 ”、“ 新能源 ”作为旗下产品的标准配置。 第三次创业,与时代同行 所谓第三次创新创业计划,是建立在早年为响应国家“民”
感知系统包括视觉系统在内,未来随着从ADAS到无人驾驶的逐步过渡,对感知系统会有一个巨大的变化。一方面,之前ADAS更多关注点在解决误报率方面,而未来无人驾驶行业会更加关注漏检率。 近日,在上海举办的2018高工智能汽车开发者大会上海站上,来自国内双目嵌入式视觉初创公司元橡科技CTO任杰表示,未来无人驾驶对安全性要求更高,不能漏报,一旦漏报就是一个很严重的交通事故。比如除了车、人等常见的一些障碍物,未来车辆感知系统必须检测到全类型的障碍物。 传统的单目视觉,首先依赖于大量的样本,对于中国这样的复杂道路场景,就要采集更多有特色的样本,谁采集的数据更多就优势越大。同时,需要对图像有一个精准的识别,只有识别了以后才能判断这个
近年来,微处理器在工业控制领域和智能化产品中得到了广泛的应用。在系统和产品的开发设计过程中,为了更好的提高其抗干扰能力,应用监控μP监控芯片是首选技术措施之一。监控芯片可为系统提供上电、掉电复位功能,也可提供其它功能,如后备电池管理,存储器保护、低电压告警或看门狗等。美国IMP公司生产的系统μP监控芯片具有功能多、功耗低的特点,而且工作时候的温度范围宽(-40~+80℃),使用简单、价格低,并可与MAXIM、AD等公司的μP监控产品完全兼容。我们曾在“IC卡电子电能表”、“气功凿岩机性能检测系统”等多个项目中使用IMP706芯片,效果良好。 1 内容结构和引脚功能 IMP706的内部结构框图如图1所示,它能在上电、掉
很多人会问,为什么没有英伟达?目前所有主流深度学习运算主流框架后端都是英伟达的CUDA,包括TensorFlow、Caffe、Caffe2、PyTorch、mxnet、PaddlePaddle,CUDA包括微架构和指令集以及并行计算引擎。CUDA垄断了深度学习或者也可以说垄断了人工智能,这一点类似ARM的微架构和指令集。CUDA强大的生态系统,造就了英伟达牢不可破的霸主地位。深度学习的理论基础在上世纪五十年代就已经齐备,无法应用的关键就是缺乏像GPU这样的密集简单运算设备,是英伟达的GPU开创了人类的深度学习时代,或者说AI时代,CUDA强化了英伟达的地位。你能不用英伟达的GPU,但必须转换格式来适应CUDA。 CUDA
领域AI处理器的深度分析 /
阿卜杜拉国王科技大学(KAUST)首次展示的集成了具有奇异性质的原子级薄二维材料的功能性微芯片预示着微电子学的新时代,这一突破证明了二维材料在扩大基于微芯片技术的功能和性能方面的潜力。 自从2004年科学家首次制造出原子级石墨薄层 - 石墨烯以来,由于其奇特和有前途的物理特性,人们对这样一种材料的先进和新型应用产生了强烈的兴趣。但是,尽管经过二十年的研究,基于这些二维材料的功能性微器件已被证明是难以实现的,因为在制造和处理这种脆弱的薄膜方面存在挑战。 受Lanza实验室最近在功能性二维薄膜方面取得的成就的启发,KAUST领导的合作现在已经生产并展示了一个基于二维的微芯片原型。 我们的动机是利用传统的硅基CMOS微
去年华为成立了智能汽车解决方案事业部,并和多家汽车企业签订合作。在今年5月中旬,上汽MAXUS(迈克萨斯)EUINQ系列上市,其智能驾驶系统就是采用了华为的控制器。 无人驾驶是ITS (Intelligent Transportation System,智能交通系统)中很重要的角色,它可以有很大成效避免人类驾驶员在判断、反应和操作上的不足,有利于增加交通安全,而且无人驾驶可以越来越好利用交通系统提供的信息和资源,来提升交通效率。 车辆智能的发展和交通系统的增强需要相当长一段时间,而在此期间驾驶员的作用依旧是不可或缺的。例如,车辆或ITS发生故障,或进行安全检测或功能验证时,这些场景下在大多数情况下要人类驾驶员控制车辆。 由此可见,这些复杂多变
保驾护航 /
当今惊人的汽车系统背后的是各种复杂的设计挑战,其中功能安全性至关重要。在2020年的一项调查中,41%的ArmECO受访者将功能安全视为实现大规模部署L4无人驾驶汽车的最大挑战。 如果功能安全性仅限于一些尖端的汽车设计,那是另外一回事,但事实并非如此。对于许多汽车应用而言,遵守安全标准对于解决在复杂程度不同的整个供应链中高效,一致地部署安全性问题至关重要。 根据经验,关键程度越高,驾驶员控制得越少,固有风险和相关的汽车安全完整性等级(ASIL)越高。行业标准ISO 26262定义了四个ASIL级别,从最低完整性级别到最高完整性级别:ASIL A,ASIL B,ASIL C和ASILD。 对于常常要驾驶员对车辆进行更
一、功能框图及功能块描述 EP7209是世界上第一片既支持流行的MP3标准,也支持诸如Microsoft Audio等快速涌现的互联网音频压缩标准的数字音频解码器片上系统。 图1是EP7209的功能框图。由图1可知EP7209含有如下功能块。 基于ARM核的音频解码器单芯片系统1 (1)ARM720T处理器含有如下功能子块: ① ARM7TDMI CPU核。该CPU核支持Thumb指令集、核调试、增强的乘法器、JTAG以及嵌入式ICE。它的时钟速率可编程为18MHz、36MHz、49MHz、74MHz。 ② 内存管理单元(MMU)与ARM710核兼容,并增加了对Windows CE的支持。该内存管理单元提
有奖报名|TI MSPM0 在【电力输送和工厂自动化与控制系统】、【家用电器和电机控制】中的典型应用
抢先体验:TI MSPM0L1306 LaunchPad开发套件,赢三模无线键盘
德索精密工业工程师指出,汽车对高压线束有电气性能、耐热性、耐久性、抗振性、防水防尘性能和安全性等要求。选择和使用适合汽车应用的高压 ...
导读随着环保意识的逐步的提升和能源问题的日益凸显,电动车作为一种清洁、高效、低排放的交通工具,正逐渐走进人们的生活。而电动车的普及和 ...
软启动电机如何接线软启动电机一般都会采用星三角启动方式,接线 检查电机参数:在进行软启动电机接线前,首先要检查 ...
1、行业概况工业伺服驱动及控制管理系统是指以物体的位移、速度、角度等控制量组成的,能够跟踪目标任意变化的自动化控制管理系统,是基于变频技术 ...
两相电机反转怎么办两相电机的反转可能是由于电源接线错误、控制器失效等原因引发的。假如发现两相电机反转,能采用以下措施解决 ...
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科